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Abstract

We locate the onset of oscillatory instability in the 
uid 
ow inside a di�eren-

tially heated cavity with aspect ratio 2 by computing a steady state and analyzing

the stability of the system via eigenvalue approximation. We discuss the choice of
parameters for the Cayley transformation so that the calculation of selected eigen-

values of the transformed system will reliably answer the question of stability. We

also present an argument that due to the symmetry of the problem, the �rst two

unstable modes will have eigenvalues that are nearly identical, and our numerical

experiments con�rm this. We also locate a co-dimension 2 bifurcation signifying

where there is a switch in the mode of initial instability. The results were obtained

using a parallel �nite element CFD code (MPSalsa) along with an Arnoldi-based

eigensolver (ARPACK), a preconditioned Krylov method code for the necessary

linear solves (Aztec), and a stability analysis library (LOCA).
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1 Introduction

We locate the onset of oscillatory instability for the 
ow in a di�erentially
heated cavity by computing a steady state and analyzing its stability. We
consider the 
ow in a box of width L = 1 and height H = 2 where the
left vertical wall is held at constant temperature and is the negative of the
right wall. Though this problem (with various values of L and H) has been the
subject of much research (Paolucci and Chenoweth, 1989; Janssen and Henkes,
1995; Xin and Le Qu�er�e, 1995; Xin et al., 1997; Le Qu�er�e and Behnia, 1998;
Mayne et al., 2000, 2001), most authors have predicted the onset of oscillatory
convection by using transient calculations. An exception to this is the work
of Xin and Le Qu�er�e (2001), who have conducted a linear stability analysis
in a square cavity using a direct method to solve the linear systems. While
our work builds upon this body of knowledge, we di�er in that we are using
a general purpose �nite element code and solving the resulting linear systems
using iterative methods. This allows us to study complex geometries and to
solve much larger systems.

We have formulated the problem so that it is similar to the study by Paolucci
and Chenoweth (1989). In this study they found that as the Rayleigh num-
ber is increased, boundary layers form on both vertical walls, and internal
hydraulic jumps form at the corners. At a critical value of the Rayleigh num-
ber, the hydraulic jumps start oscillating. They also found that there were
other frequencies of oscillation present in the system associated with \wall
modes." The explanation in terms of hydraulic jumps was �rst proposed by
?), but later authors (?) have objected to the hydraulic jump interpretation
and instead refer to the oscillations of the hydraulic jumps as \internal wave
instabilities."

In this paper we verify these results by Paolucci and Chenoweth for the case
of aspect ratio equal to 2 by matching frequencies of oscillations. We �nd an
additional pair of modes with a lower frequency that destabilize the system at
the lowest Rayleigh number. Our ability to calculate the stability of a steady
state solution allows us to draw some further conclusions not readily available
with transient simulations. We observe numerically that the eigenvalues of
this problem come in pairs where the eigenvalues are almost identical to each
other. One of the eigenvalues in this pair is associated with a symmetric mode
and the other with an anti-symmetric mode. We give a convincing analytical
argument suggesting why this should be the case.

That the eigenvalues come in near identical pairs suggests that by varying
other parameters (such as the Prandtl number and aspect ratio) in the prob-
lem, we can get one of these pairs to merge at precisely the point where the
system loses its stability. This is an example of a double Hopf bifurcation, one
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of the �ve generic co-dimension two bifurcations (?). The double Hopf bifur-
cation is especially interesting since it has a four dimensional center manifold,
and we are almost guaranteed of getting chaotic behavior in the immediate
vicinity of such a point in parameter space. By varying the Prandtl number
in this problem we have been able to �nd a double Hopf bifurcation point.
Additionally, the most interesting case we found resulted not from the eigen-
values in these symmetric/anti-symmetric pairs crossing, but from when an
eigenvalue associated with a wall mode crossed an eigenvalue associated with
an oscillating internal wave. This discovery was enabled by the complementary
capabilities of calculating eigenvalues and eigenvectors and of tracking Hopf
bifurcation points.

Not only does this classical problem exhibit interesting physical behavior, but
it also demonstrates and veri�es our eigenvalue analysis capabilities. Our Cay-
ley transform method, as implemented in the LOCA stability analysis library
(Salinger et al., 2002b), allows us to locate the onset of oscillatory instabilities;
in order to locate these instabilities it is necessary to compute the eigenvalue
of the system with largest real part (Meerbergen and Spence, 1997). It remains
an open problem in large-scale non-symmetric eigenvalue calculations to reli-
ably verify that the rightmost eigenvalue has been computed. Without that
result, those scientists and engineers interested in computing linear stability
require a variety of analysis tools; here we present a Cayley transform method
that is e�ective in �nding the rightmost eigenvalue when the imaginary part
of that eigenvalue is large. One of the goals of this paper is to convince the
reader of the reliability and applicability of this method to other problems of
this type.

The 
ow due to natural convection in a di�erentially heated cavity is advec-
tively dominated; advectively dominated 
ows are characterized by eigenvalues
that have a large imaginary part relative to the real part. This can result in
two computational diÆculties. First, it can be diÆcult to compute the eigen-
values of the discretized system. Our choice of Cayley transform along with
the use of an Arnoldi-based algorithm proves to be a reliable method to over-
come this diÆculty. The second diÆculty is that we may need to discretize
the Navier-Stokes equations on a highly resolved mesh so that the real part
of the eigenvalues will approximate those of the continuous system.

The performance of our code on this problem demonstrates that we do need
�ne meshes to accurately compute converged real parts of the eigenvalues of
interest. We will show that this is due to discretization errors, not to a failure of
the eigensolver to compute the correct eigenvalues. In fact, we emphasize that
the eigensolver handles with ease the large systems we are studying. Because
the limitation lies in the discretization, we claim that a transient �nite element
code would have the same diÆculty accurately computing these 
ows.
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Our calculations are carried out using a combination of a general purpose
massively parallel unstructured grid �nite element CFD code, MPSalsa (Sha-
did, 1999), and an existing Arnoldi-based eigensolver, ARPACK, (Lehoucq
et al., 1998) and a parallel iterative linear solver using preconditioned Krylov
methods package, AZTEC (Tuminaro et al., 1999). MPSalsa discretizes the
Navier-Stokes equations and applies Newton's method to solve for the steady
state. Because our interest is in discretized Navier-Stokes equations in gen-
eral geometries that lead to linear systems of order 104{107 for two and three
dimensional problems, direct methods (even sparse direct methods) for the
linear solves or subspace iteration for the eigensolve are not an option. We
will demonstrate that parallel Krylov iterative methods can be reliably used
for large-scale linear stability analysis on massively parallel machines.

Our approach is as reliable as calculations accomplished with transient meth-
ods; our approach is more eÆcient because we use a Krylov subspace method
and use a frozen Jacobian, so we avoid the non-linear solve made at every time
step by a transient calculation. While we can not guarantee that our approach
will reliably locate all instabilities because of the need to intelligently pick the
parameters in the Cayley transformation, we assert that this is the same risk
associated with choosing the time step and integration time when detecting
instabilities through time integration. Moreover, our approach also provides
qualitative information on the 
uid 
ow not otherwise available. As we show,
the information from the eigensolver can readily be used to track instabilities
in parameter space and to locate higher co-dimension bifurcations.

We organize our paper as outlined: In Section 2 we introduce our formulation
of the problem of the 
ow in a di�erentially heated cavity that provides the nu-
merical example for our study. We also state the Navier-Stokes equations with
the Boussinesq approximation governing the motion of the 
ow and present a
novel result regarding the symmetry of the problem and the resulting nearly
identical eigenvalues. In Section 3 we discuss the �nite element code MPSalsa,
the Cayley transform as implemented in the LOCA library, the choice of Cay-
ley parameters and the Arnoldi-based eigenvalue package ARPACK. Section
4 gives linear stability analysis results for convection di�erentially heated cav-
ity, including comparisons with published results and mesh resolution studies.
In Section 5 we highlight some of the numerical issues that arise in the lin-
ear stability analysis. Section 6 presents results of tracking instabilities as a
function of the Prandtl number, including the detection of a co-dimension 2
bifurcation. Section 7 summarizes our �ndings.
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2 Problem formulation

In this section we describe the problem of convection in a two dimensional
vertical cavity and give the basic equations that govern our 
ow. We present
the novel result that due to the symmetry of the problem we have a pair of
nearly identical eigenvalues.

2.1 The problem of 
ow in a di�erentially heated cavity

We consider the 
ow in a cavity of width L and height H. The left vertical
wall is held at a constant temperature ��T=2, and the right vertical wall is
held at the temperature �T=2. We impose no-
ux boundary conditions at the
horizontal walls and no-slip boundary conditions on all walls.

We solve the Navier-Stokes equations with the Boussinesq approximation for
the 
ow of a thermally driven incompressible 
uid:

@u

@t
+ u � ru+

1

�
rp= �r2u + g�(T � Tref)eg (1)

@T

@t
+ u � rT =�r2T (2)

r � u=0 (3)

where u = uex+vey+wez, p and T are the velocity, pressure and temperature;
�, � and � are the density, kinematic viscosity and thermal di�usivity; g and
� are the acceleration of gravity and the thermal expansion coeÆcient of the

uid. The vector eg is a unit vector in the direction of the gravity vector.
The Boussinesq approximation assumes that the temperatures T are all close
enough to an average temperature Tref that we can ignore the variations in
density in all terms in the equations except for the forcing term due to gravity.
In these equations we subtract the hydrostatic part of the pressure.

The boundary conditions are zero velocities on all four walls, adiabatic Neu-
mann conditions on the top and bottom walls for the heat equations, and
Dirichlet temperatures on the side walls:

T (�
L

2
; y) =

�T

2
; and T (

L

2
; y) = �

�T

2
:

Other than the physical constants appearing in the equations, the only pa-
rameters appearing in our problem are the temperature di�erence �T , the
characteristic geometrical length L, and the geometrical aspect ratio. The

5



dimensionless parameters that result from the parameters are the Rayleigh
number,

Ra =
g��TL3

��
;

and the Prandtl number,

Pr =
�

�
:

We achieve the desired Rayleigh and Prandtl numbers by selecting � = L =
�T = 1, g = Pr� 101, � = Pr� 10�3 and � = 1� 10�3. We then control the
Rayleigh number using Ra = � � 107.

2.2 Symmetry and near-degeneracy of the eigenvalues

Because the right vertical wall is held at a temperature that is the negative of
the left vertical wall, the governing equations are invariant under the following
symmetry transformations:

Rz(x) =

0
B@
�T (�x)
�u(�x)
p(�x)

1
CA (4)

where we are representing our solution in the form

z(x) =

0
B@T (x)
u(x)
p(x)

1
CA :

If z(x) is a solution to our equations, then so is Rz(x). However, it is not
necessary that solutions to our equations satisfy Rz(x) = z(x).

We are analyzing the stability of symmetric solutions, so all eigenfunctions will
either be symmetric or anti-symmetric. Any simple eigenfunction will either
satisfy R�(x) = �(x) or R�(x) = ��(x). Symmetry can only be broken
through a bifurcation, so that a solution that is initially symmetric will stay
symmetric as we vary a parameter unless we encounter a bifurcation point.

When our system goes unstable, the internal waves will either oscillate in
a symmetric manner or in an anti-symmetric manner. Physically we expect
that if the walls are well separated, then the 
uid on the left should be able
to oscillate independently of the 
uid on the right. In order for this to be
so, we would have to be able to construct eigenfunctions where the 
uid on
the left oscillates but that on the right does not. The only way to do this
is if we have multiple eigenvalues, with one symmetric eigenvector and the
other anti-symmetric. This is not quite what occurs because the two sides
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are not completely separated, but we almost get this. Hence we have two
eigenvalues that are almost identical to each other. This result is borne out in
our eigenvalue calculations, presented in Section 4.

3 Methodology

In this section we discuss the numerical methods used by MPSalsa to locate
steady state solutions of Equations (1){(3), the formulation of the eigenvalue
problem and our Cayley transform method, and the numerical solution of the
eigenvalue problem.

3.1 Spatial discretization and the non-linear solve

A full description of the numerical methods in MPSalsa used to locate steady
state solutions of Equations (1){(3) is available in (Shadid, 1999) and the
references listed therein. A brief overview is presented in this section.

A mesh of quadrilaterals for 2D problems and hexahedra for 3D problems is
generated to cover the domain. Although the code allows for general unstruc-
tured meshes, the problem in this paper uses structured meshes. For parallel
runs, the mesh is partitioned using the Chaco code (Hendrickson and Leland,
1995) in a way that will distribute work evenly while minimizing communica-
tion costs between processors. A Galerkin/least-squares �nite element method
(Hughes et al., 1989) (GLS-FEM) is used to discretize the time-invariant ver-
sions of the governing partial di�erential equations (1){(3) into a set of nonlin-
ear algebraic equations. This formulation includes a pressure stabilization term
so that the velocity components, temperature and pressure �elds can all be
represented with equal order nodal basis functions. GLS-FEM is a consistent
stabilized scheme because when the exact solution is inserted, the Boussinesq
equations are satis�ed exactly. We use bilinear and trilinear nodal elements
for two and three dimensional problems, respectively.

Discretization of (1){(3) results in the matrix equation

 
M 0

N 0

!"
_u
_p

#
+

 
Ku;T +C(u) �D
DT +G Kp

!"
u

p

#
�

"
g

h

#
=

"
0

0

#
(5)

where u is the vector of 
uid velocity components and temperature unknowns,
p is the pressure,M is the symmetric positive de�nite matrix of the overlaps of
the �nite element basis functions, Ku;T is the sti�ness matrix associated with
velocity and temperature, C(u) is the nonlinear convection, D is the discrete
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(weak) gradient, DT is the discrete (weak) divergence operator and Kp is the
sti�ness matrix for the pressure. G;Kp;N are stabilization terms arising from
the GLS-FEM. The vectors g and h denote terms due to boundary conditions
and the Boussinesq approximation.

The resulting nonlinear algebraic equations arising from setting the time deriva-
tive terms to zero are solved using a fully coupled Newton-Raphson method
(Shadid et al., 1997). An analytic Jacobian matrix for the entire system is cal-
culated and stored in a sparse matrix storage format. At each Newton-Raphson
iteration, the linear system is solved using the Aztec package (Tuminaro et al.,
1999) of parallel preconditioned Krylov iterative solvers. The accuracy of the
steady state solve is set by the following stopping criterion,

0
@ 1

N

NX
i=1

 
jÆij

�Rjxij+ �A

!2
1
A

1

2

< 1:0; (6)

where �R and �A are the relative and absolute tolerances desired, Æi is the
update for the unknown xi and N is the total number of unknowns. We use
relative and absolute tolerances of 10�5 and 10�8, respectively, for this study.
In Aztec we exclusively use an unrestarted GMRES iteration with a non-
overlapping Schwarz preconditioner where an ILU preconditioner is used on
each sub-domain (each processor contains one sub-domain). These methods
enable rapid convergence to both stable and unstable steady state solutions.
The scalability of these methods to large system sizes and numbers of proces-
sors is demonstrated by the solution of a 16 million unknown model on 2048
processors (Burroughs et al., 2001).

3.2 The discretized eigenvalue problem and Cayley transforms

The GLS-FEM results in a spatial discretization of the Navier-Stokes equa-
tions with the Boussinesq approximation. This leads to a �nite dimensional
system of di�erential algebraic equations of the form

B _x = F(x); x(0) = x0; (7)

where the matrix B is singular (due to the divergence free constraint) and x is
a vector containing the nodal values of the velocities, temperature and pressure
at the nodes of the �nite element mesh. Because of the stabilization terms in
the GLS discretization,B, the matrix associated with the time derivative term
in (5), is a non-symmetric matrix.
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One can determine the stability of a steady state solution xs of F(xs) =
0 in one of two ways: by solving the generalized eigenvalue problem that
results from the linearization of (7) about the steady state, or by using a time
integration scheme.

The �rst approach solves the generalized eigenvalue problem

�Bz = J(xs)z � Jz: (8)

that arises from the linearization of (7) about the steady state. The matrix
J(xs) is the Jacobian of F(�) linearized about xs. We assume that the eigen-
values are ordered with respect to decreasing real part; real(�i+1) � real(�i).
If all the eigenvalues of (8) have negative real parts, the steady state is stable.

We use a Cayley transform so that we �nd the eigenvalues 
i of the system

(J� �B)�1(J� �B)z = 
z

that are related to the eigenvalues �k of (8) via


i =
�k � �

�k � �
i = 1; : : : ; n; k = 1; : : : ; n

We choose � > 0 and � = ��; we choose the value of � so that it is of
similar magnitude to the imaginary part of the eigenvalue of interest, and so
that � > Re(�1). This transformation has the property of mapping a � in the
right half of the complex plane (i.e. an unstable mode) to a 
 outside the unit
circle, and those on the left half plane (i.e. a stable mode) to a 
 inside the
unit circle. That is,

real(�) > 0 =) k
k > 1:0; and real(�) < 0 =) k
k < 1:0:

Since Arnoldi's method will converge more rapidly to those eigenvalues with
larger magnitudes, this is a very desirable property for calculating eigenvalues
for use in linear stability analysis.

The use of preconditioned Krylov methods for both the eigenvalue problem
and ensuing linear solves for large-scale two and three dimensional prob-
lems is not generally undertaken. The results of our paper will show that
we have found success in this method. The computation of eigenvalues of the
linearized steady state has received much attention in the last �fteen years
(Christodoulou and Scriven, 1988; Cli�e et al., 1993; Edwards et al., 1994;
Mittelmann et al., 1994; Fortin et al., 1997; van Dorsselaer, 1997; Morzy�nki
et al., 1999; Tukerman et al., 2000; Lehoucq and Salinger, 2001). The con-
sensus of this research is to convert the generalized eigenvalue problem (8)
into a standard eigenvalue problem and then solve the resulting set of linear
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equations during each iteration of the eigensolver. Most of the authors of these
papers then solve the eigenvalue problem using inverse subspace iteration or
Arnoldi's method with a sparse direct method for the resulting linear set of
equations (Christodoulou and Scriven, 1988; Cli�e et al., 1993; Fortin et al.,
1997; Morzy�nki et al., 1999; van Dorsselaer, 1997; Mittelmann et al., 1994).
This typically limits the linear stability analysis to two dimensional problems.
Our approach of using Cayley transforms to reduce (8) to a standard eigen-
value problem is successful, and the eigensolver performs with ease on our
large (order 105{107) systems.

The second approach to computing the stability of a steady state is to use a
time integration scheme; standard time integration schemes typically perform
a nonlinear solve (due to convection) at every time step. We can think of these
as computing an iteration of the form

xn+1 = G(xn): (9)

The iteration is initialized with an iterate near the steady state and if the
iteration converges toward the �xed point xs, then the steady state is declared
stable. If x0 is an initial condition for (9), then the convergence and numerical
stability of the �xed point iteration is determined by the spectral radius of
the Jacobian of G(�). In particular, denote the eigenvalues of G

x
(x0) by 
i

ordered so that j
i+1j � j
ij.

A popular time integration scheme is given by the trapezoidal rule and results
in the iteration

xn+1 = G(xn) =

 
B�

4t

2
J

!�1  
B+

4t

2
J

!
xn (10)

where the Jacobian is \frozen" at the steady state. The eigenvalues 
i and �i
are related via


i = �
�k +

2

4t

�k �
2

4t

i = 1; : : : ; n; k = 1; : : : ; n

and so, in principle, the eigenvalues of (8) can be determined by computing
those of

� (J� �B)�1 (J� �B) z � Gz = �
z

where � = �� = 2=4t. Note that this is the same as our choice of Cayley
transform with � = �� = 2=4t.

The above discussion demonstrates that at a steady state, time integration
and computing the eigenvalues of (8) are intimately related when a frozen
Jacobian approximation is employed. We remark that although large-scale
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eigensolvers (subspace iteration or Arnoldi's method) favor the computation of
those eigenvalues largest in magnitude, these may not be the desired rightmost
eigenvalues This occurs when the 
ow is advectively dominated. Our choice
of a Cayley transform allows us to overcome this diÆculty.

We now explain why Arnoldi's method for the eigenvalue solvers is preferred
to the typically undertaken transient calculation. A transient calculation (with
the linearized Jacobian J) or �xed point iteration is equivalent to the power
method on G. The rate of convergence to the eigenvector associated with 
1
is j
2=
1j. The rate of convergence improves to j
m+1=
1j if the power method
is replaced by subspace iteration on m vectors. However, the resulting rate of
convergence can be intolerable. The rate of convergence to 
1; 
2; : : : ; 
r may
be dramatically improved by projecting G onto the column space of

x0;x1; � � � ;xm:

Arnoldi's method (Arnoldi, 1951) iteratively determines an orthogonal basis
for the above column space that by de�nition is a Krylov subspace.

3.3 Arnoldi's method and the numerical solution of the eigenvalue

problem

The remainder of the section reviews several issues with the use of Arnoldi's
method for the numerical solution of the eigenvalue problem. We use the paral-
lel implementation P ARPACK (Maschho� and Sorensen, 1996) of ARPACK
(Lehoucq et al., 1998) for computing the eigenvalues of (8) via Cayley trans-
forms. We refer the reader to (Lehoucq and Salinger, 2001) for information
regarding the use of ARPACK for problems in linear stability analysis.

We discuss the selection of the Cayley parameters � and �. There are two
strategies by which we can choose the Cayley parameters. The �rst strat-
egy was presented in the previous subsection and draws upon a connection
with the trapezoidal rule in �xed point iteration. This is the strategy we em-
ploy in this study; we will discuss the implications of this choice in Section
5. The second strategy was presented by Lehoucq and Salinger (2001); the
Cayley parameters are selected �1 < � < � so that the condition number of
(J��B)�1(J��B) is bounded and so can be eÆciently solved with precondi-
tioned Krylov methods. This second strategy tends to be more eÆcient than
the �rst strategy for �nding eigenvalues with zero or small imaginary parts;
however, it is not as reliable. (Nor is there a relationship with a common �xed
point iteration scheme for determining the stability of the steady state. The
analogous time-stepper is unconditionally unstable for all modes.) The lack of
reliability manifests itself when the 
ow is advectively dominated so that the
rightmost �'s do not correspond to the largest in magnitude 
's. We remark
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that we encountered this unreliability in the solution of the problem of the
secondary bifurcation from steady rolls into oscillatory rolls in the Rayleigh-
B�enard problem, discussed in Burroughs et al. (2001): the �rst strategy �nds
the eigenvalues of interest where the second does not.

We brie
y overview several salient issues. Further details are available in the
discussion of the numerical experiments performed in Section 4 and Section
5, and in the paper (Lehoucq and Salinger, 2001).

(1) The numerical solution of the linear system resulting from using a Cay-
ley transform is found by exclusively using an unrestarted GMRES it-
eration with a non-overlapping Schwarz preconditioner where an ILU
preconditioner is used on each sub-domain (each processor contains one
sub-domain).

(2) We must choose the size of the Arnoldi space m (needed by ARPACK).
Our �ndings, in general, are that for the most diÆcult problems m was
never larger than 160 and 80 was typically more than adequate. We re-
mark that although ARPACK does provide a capability to restart the
Arnoldi iteration, our experiments did not use this capability. Instead,
our focus is to examine the use of preconditioned Krylov methods for
linear stability analysis.

(3) The tolerance needed by the GMRES iteration and ARPACK and their
relationship was studied in (Lehoucq and Salinger, 2001), and adjusts
automatically to the scaling of the problem. In general, these tolerances
were no larger than 10�6 and no smaller 10�9.

(4) Since the Boussinesq equations (1){(3) model an incompressible 
uid, the
starting vector for ARPACK is selected as J�1Bw, where w is a random
vector. The resulting vector is divergence free (Meerbergen and Spence,
1997).

(5) The P ARPACK subroutines pdnaupd and pdneupd were modi�ed to
implement the Cayley transform and an improved check for termination.
The eigensolve is terminated when �1; �2; : : : ; �r and corresponding ap-
proximate eigenvectors for a user speci�ed r satisfy the residual tolerance.
This code is available through the LOCA library (Salinger et al., 2002b).

4 Results of convection in a di�erentially heated cavity

We conduct our numerical experiments at a Prandtl number of .71 and with
H = 2 and L = 1 in order to compare our results to those of Paolucci and
Chenoweth (1989). We validate our results through comparison to the numeri-
cal solutions of Paolucci and Chenoweth and verify our results by tracking the
residual accuracy of our computed eigenvalues and linear systems and through
a study of convergence as we re�ne the �nite element mesh.
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Table I

The eigenvalues for convection in a cavity with mesh 160� 320. Note that !1 & !2
are based on the frequencies reported by Paolucci and Chenoweth (1989) and are

available for comparison for the two Rayleigh numbers 3:0� 107 and 2:0� 107

Ra(107) !1 !2 �1 �2 �3
3:0 1.088 0.3295 � 1.097i 0.3259 � 1.099i 0.0961 � 12.14i

2:75 0.2678 � 1.056i 0.2634 � 1.0574i 0.0474 � 11.44i

2:5 0.1937 � 1.010i 0.1884 � 1.012i -0.0017 � 10.73i
2:25 0.1067 � 0.9584i 0.1001 � 0.9628i -0.0479 � 9.997i

2:0 2.316 0.0138 � 0.8946i 0.0001 � 0.9081i -0.0681 � 2.338i

1:75 -0.0631 � 0.8143i -0.0649 -0.0757 � 2.177i

Although Paolucci and Chenoweth did not make the Boussinesq approxima-
tion in their calculations, they purposely used conditions that are well ap-
proximated by the Boussinesq approximation. In particular, �T=TAV = :01
where �T is the di�erence between the wall temperatures and TAV is the
average of the wall temperatures. When A = H=L = 2 they found an at a
Rayleigh number of approximately Ra = 3 � 107 with a dimensionless fre-
quency of f = 173:2. (Because we do not make our equations dimensionless
in the same way, to compare the frequencies fPC reported in Paolucci and
Chenoweth to the imaginary part of our computed eigenvalues we look at
! = fPC � 2�=1000.)

We solve on quadrilateral �nite element meshes with bilinear basis functions
of 40�80, 80�160, 160�320, 320�640 and 640�1280: The spacing between
the mesh points increases exponentially as we move away from the walls, with
the points in the middle of the box having mesh spacings about 20 times as
large as those near the walls.

For the �nest mesh, we have 3,284,484 unknowns and solve on 256 processors
of the Sandia-Intel TFlop machine (ASCI Red) with 333 MHz Pentium pro-
cessors. On this �nal mesh it is somewhat diÆcult to achieve convergence to
the steady state solution; we rely on continuation to �nd the steady state at
the desired Rayleigh numbers. The number of GMRES solves for each eigen-
solver iteration is approximately 200. The time to compute eigenvalues for the
�nest mesh is 6 hours for Ra = 3:0�107. We set the Cayley parameters � = 5,
� = �5 and the Arnoldi size to 160.

Table I shows the eigenvalues for the 160� 320 mesh and how they compare
with the results of Paolucci and Chenoweth. Paolucci and Chenoweth per-
formed calculations at Rayleigh numbers of 3� 107 and 2� 107 for A = 2:0.
The frequency they report at Ra = 3 � 107 is in excellent agreement with
the frequency predicted by our eigenvalue calculation (1.088 vs. 1.097). When
Ra = 2� 107 we still get good agreement (2.316 vs. 2.338), but the frequency
they report agrees with what we calculate to be the third mode. While they
report the 
ow as being stable, our eigenvalue calculations report that the
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Table II

Eigenvalues and maximum computed values for the velocity in the problem of the

onset of convection in a heated cavity with Ra = 3:0 � 107 with varying mesh

resolution of N � 2N .
N �1 �2 �3 x-velocity coordinates

40 0.3217 � 1.020i 0.3192 � 1.020i -0.0778 � 2.856i 0.8054 (0.119, 1.97)

80 0.3326 � 1.091i 0.3294 � 1.092i -0.0003 � 11.98i 0.7993 (0.129, 1.97)
160 0.3295 � 1.097i 0.3295 � 1.099i 0.0961 � 12.14i 0.8032 (0.124, 1.97)

320 0.3275 � 1.096i 0.3238 � 1.098i 0.1040 � 12.19i 0.8048 (0.124, 1.97)

640 0.3267 � 1.096i 0.3231 � 1.097i 0.1039 � 12.20i 0.8052 (0.122, 1.97)


ow is unstable because the �rst two modes have positive real parts. Possible
explanations for why the previous work may have missed this mode include
that the ungraded mesh used for this data point (generated with the comput-
ing power available 14 years ago) may not have fully resolved the 
ow, or that
the starting point for the transient calculation did not contain a signi�cant
contribution in the direction of this instability (which is very close to being
neutrally stable).

In order to see how the steady state solution converges with mesh re�nement
we have included Table II. This table shows the three most unstable eigen-
values and the maximum value of the x-velocity calculated with our various
meshes. We are clearly getting convergence, but the convergence of the maxi-
mum x-velocity with mesh is somewhat slow and clearly is no better than the
convergence with mesh of the eigenvalues.

We see slow convergence toward the real parts of the most unstable eigen-
value. (Other test problems we have studied that are not strongly advectively
dominated 
ows show quadratic convergence rates (Burroughs et al., 2001).)
We believe that this problem demonstrates the limitations of looking for grid
independence with a linear basis functions, particularly for highly advective

ows. However, we note that the diÆculties are with the resolution of the
discretization and not in solving the eigenvalue problem. We emphasize that
a transient solution is not any more reliable than the eigenvalue computa-
tions, and that in fact our eigensolver encounters no trouble in this 3 million
unknown system. We also note that this problem is two dimensional; if we
were trying to achieve the same resolution on a three dimensional problem,
we would have billions of unknowns.

5 Numerical issues

Because we use parallel preconditioned Krylov iterative methods for the eigen-
value problem and resulting linear sets of equations, our results are obtained
by specifying the values of certain adjustable parameters: we need to specify
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the Cayley parameters � and � and the size of the Arnoldi space. We brie
y
review our veri�cation procedures used for our numerical experiments; as sev-
eral issues have been discussed in a previous paper, which used the same CFD
Code, MPSalsa, and eigensolver, P ARPACK, but a di�erent Cayley method,
the reader is referred to (Lehoucq and Salinger, 2001) for information regard-
ing details of linear algebra tolerances. Our main emphasis in this section is
to illustrate how sensitive our results are to the Cayley parameters.

Denote by �c and zc the approximations to an eigenvalue and eigenvector of
(8). We verify these approximations by computing the norm of the residual

Direct Residual =
jjJzc � �cBzcjj

jjBzcjj
; (11)

where jj � jj is the Euclidean norm of a vector. These errors only vanish when
�c and zc are an eigenpair for (8). Note that these measures are independent
of the scaling of zc.

We now discuss the Cayley parameters and the size m of the Arnoldi space
used by ARPACK. These two parameters are related because if one chooses
the Cayley parameters poorly, a large Arnoldi space will be required to obtain
accurate eigenvalues. Our experience dictates that it is best to choose the
Cayley parameters so that they are of the same order of the imaginary part of
the most unstable eigenvalue. We believe that this is a reasonable assumption
because the user typically has some idea of the location of the imaginary part
of the most unstable eigenvalue. For example, this information is available if we
are solving a problem that is a small variation of a problem that has already
been solved, or if we have access to related experimental or computational
results. This is a drawback to the method if there is no prior evidence regarding
the size of the imaginary portion of the most unstable eigenvalue. However,
this is the same issue as choosing a time step size for transient runs that is
not so large as to step over oscillations, or a total time that is too small to
sense the oscillations.

Table III shows the errors in the most unstable eigenvalue of the onset of con-
vection in a di�erentially heated cavity as a function of the Cayley parameters
and the size of the Arnoldi space. These calculations were accomplished with
a 160� 320 mesh and a Rayleigh number of 3:0� 107. We see that changing
the Cayley parameters from �1 to �0:5 or �5 does not signi�cantly degrade
the performance of the algorithm. By the time the Cayley parameters are �20
we are seeing some degradation in the algorithm, but we are still getting quite
good convergence after 160 iterations. Choosing the Cayley parameters too
large is the same as integrating in time with too small a time step; it requires
more Arnoldi iterations (time steps) to detect an oscillation. Notice also that
we sometimes misidentify the most unstable eigenvalue; looking at the error,
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Table III

The e�ect of Arnoldi size and Cayley parameters on the problem of convection in

a di�erentially heated cavity. These results are for the most unstable eigenvalue at

Ra = 3:0� 107 and a grid of 160� 320. In the case where the eigenvalue of interest,

0:3295 � 1:097i, is not identi�ed as the most unstable eigenvalue, we have listed

both eigenvalues.
� = �� Arnoldi Size Eigenvalue Direct Residual

0.5

40 0.3295 � 1.097i 5.063 �10�8

80 0.3295 � 1.097i 4.564 �10�8

160 0.3295 � 1.097i 4.564 �10�8

1

40 0.3295 � 1.097i 2.597 �10�8

80 0.4774 � 13.03i 8.685 �100

0.3295 � 1.097i 2.904 �10�8

160 0.8677 � 17.39i 7.885 �100

0.3295 � 1.097i 2.904 �10�8

200 0.3295 � 1.097i 2.904 �10�8

5

40 0.5761 � 12.98i 3.726 �10�1

0.3295 � 1.097i 7.769 �10�5

80 0.3295 � 1.097i 2.448 �10�7

160 0.3295 � 1.097i 7.281 �10�8

20

40 0.6094 � 17.35i 3.056 �10�1

0.4343 � 20.11 i 4.553 �10�1

0.2769 � 1.060i 4.801 �10�2

80 0.3272 � 1.096i 2.256 �10�4

160 0.3300 � 1.098i 8.196 �10�5

though, we see that this misidenti�ed eigenvalue has not converged to a rea-
sonable tolerance. In these situations increasing the size of the Arnoldi space
allows us to compute the eigenvalues more accurately.

The accuracy of all of these calculations can also be limited by the accuracy
to which we solve our linear systems at each Arnoldi iteration. For example,
in Table III we do not get appreciably better results by using an Arnoldi space
of size 160 instead of 80. In general, to improve the accuracy of our eigenvalue
calculations we must either increase the size of the Arnoldi space or choose
a better value for � = ��, or decrease the tolerance to which we solve our
linear systems. We should note, however, that these eigenvalue calculations
are already highly converged. Even those with residuals near 10�4 instead of
below 10�7 had the eigenvalues correct to 3 digits. A comparison to the mesh
convergence results in Table II indicates that the limiting factor in predicting
the eigenvalues to the real PDE system is more likely to be the discretization
than the eigensolver.
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6 Results of tracking Hopf bifurcations

The method of determining solution stability through eigenvalue calculations
of steady solutions lends itself to the use of bifurcation tracking algorithms. In
this section we show how these combined capabilities can be used to provide
considerable insight into the stability picture for the model problem for 
ow
in a di�erentially heated cavity of aspect ratio 2.

The results in Table I indicate that, with the 160 � 320 mesh, the �rst in-
stability for a 
uid with Pr = 0:71 occurs for 1:75 � 107 < Ra < 2:0 � 107.
Using the solution vector, eigenvector, and imaginary part of the eigenvalue at
Ra = 2:0� 107, we invoked the Hopf bifurcation tracking algorithm in LOCA
(Salinger et al., 2002b) and previously used in Salinger et al. (2002a). This
algorithm uses a Newton algorithm to directly solve for the Hopf bifurcation
and requires a good initial guess as supplied by the eigensolver.

The Hopf tracking algorithm located the �rst instability, which we will term
IA, at Ra = 1:9608 � 107 and the second, IS, at Ra = 1:9997 � 107. Visu-
alization of the eigenmodes shows that the �rst mode is anti-symmetric with
respect to the symmetry of the equations, as shown in Equation 4, while the
second is the symmetric version of the same physical mode.

We became curious about how persistent was the phenomenon that the anti-
symmetric mode is the �rst to lose stability as a function of another system
parameter. We tracked the Rayleigh number where the Hopf bifurcation occurs
as a function of the Prandtl number. We did not �nd a change in the order
of instability as we increased to Pr = 1:3. However, when decreasing the
Prandtl number to generate the IA and IS curves in Figure 1, we found that
the curves cross at Pr = 0:6368 and Ra = 2:908� 107, indicating that indeed
the symmetric mode becomes more unstable then the anti-symmetric mode
for Prandtl numbers in the neighborhood below that.

However, veri�cation of this double-Hopf bifurcation with the eigensolver led
to the discovery of two other complex pairs of eigenvalues with positive real
parts. Further computations produced the curves labeledWA andWS in Fig-
ure 1. These modes are the anti-symmetric and symmetric versions of the wall
mode described by Paolucci and Chenoweth (1989). We can see graphically
that a co-dimension 2 bifurcation occurs near Pr = 0:681 and Ra = 2:22�107.
At this Prandtl number there is a switch between whether the IA or WA

mode is the �rst to go unstable. Figure 2 shows a visualization of the base

ow and temperature contours at this point, and Figure 3 shows the temper-
ature pro�les for both modes that go unstable at this point. Since these are
oscillatory instabilities, both the real and imaginary part of the eigenvectors
are visualized for each mode.
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Fig. 1. The tracking of four Hopf bifurcations as a function of the Prandtl number

shows that the IA mode goes unstable at the lowest Ra until Pr = 0:681, at which
time the WA mode is the �rst to go unstable. These modes are both shown in

Figure 3. (The dotted line extensions to the WA and WS branches were added to

clarify that these branches will continue to lower values of Pr, but these parts have

not been calculated.)

As the two wall modes continue to lower Prandtl numbers, they also appear
to cross. At this point, convergence was lost for the anti-symmetric mode.
One interesting point is that this crossing of branches WA and WS occurs
where the frequencies appear to be equal, while this was not the case when
the IAand IS modes cross. This added degeneracy could be responsible for
the diÆculties in convergence.

7 Conclusions

We have completed a linear stability analysis on the problem of the 
ow in a
di�erentially heated cavity. We have identi�ed the frequency of the oscillatory
instability for various Rayleigh numbers for an aspect ratio of 2 and a Prandtl
number of 0:71. The frequency we identify at Ra = 3:0 � 107 is in excellent
agreement with prior published results, but for Ra = 2:0 � 107 we �nd two
modes more unstable than that found by Paolucci and Chenoweth (1989), and
the frequency of the third most unstable mode corresponds to their published
result. We also present an argument that the �rst two most unstable modes
will have eigenvalues that are nearly identical, and our eigenvalue calculations
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Fig. 2. This plot shows the steady solution where it loses stability with respect to

two modes, at the co-dimension 2 bifurcation where the IA andWA branches cross

in Figure 1. Velocity vectors and temperature contours are shown for this symmetric

solution.

demonstrate this is the case.

We have demonstrated both the capabilities and the limitations of using a gen-
eral purpose �nite element code and eigensolver for 
uid stability calculations.
Our interest is in large problems in possibly complex geometries where it is
necessary to use iterative methods for the linear algebraic calculations. Our
method has proved to be reliable in identifying the most unstable eigenvalue
in advectively dominated 
ows because of our choice of Cayley transforms em-
ployed. The limitation of our method is that it is computationally intensive
to reach high levels convergence with a low order �nite element discretization.
We do not believe that our eigenvalue techniques have reached any inherent
limitation.

In 
ows that are advectively dominated, computing stability using either an
eigensolver or transient calculations will produce the same diÆculties in that
they will require a �ne discretization of the �nite element mesh. We maintain
that our results are as reliable as those obtained using transient integration,
but that our results are more eÆciently computed because we use a Krylov
subspace method instead of the power method, and because we use a frozen
Jacobian. We believe that our use of preconditioned Krylov iterative methods
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Fig. 3. The modes of instability at the co-dimension 2 bifurcation are visualized.

Temperature contours for the real and imaginary components of the anti-symmetric

interior mode IA are shown on top, and those for the anti-symmetric wall mode

WA are shown on the bottom.
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were successful because of the high quality and robust implementation of these
algorithms, ARPACK and Aztec.

The determining of stability through calculation of steady states and lead-
ing eigenvalues and eigenvectors lends itself well to using bifurcation tracking
algorithms. We have shown the power of using these complementary tech-
niques by uncovering the stability behavior for a range of Prandtl number.
A co-dimension 2 bifurcation representing the exchange of initial instability
between interior and wall modes was found to exist with just a 5% decrease
in the Prandtl number from the conditions previously studied.
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